Recitation 1. February 23

Focus: Rules of matrix multiplication, Gaussian and Gauss-Jordan elimination.

The most basic rule that you should remember: row column. It shows the order in which you write or compute:

- The first index denotes the row, the second number the column.
- You multiply a row by a column to get a number.
- An $m \times n$ matrix has m rows and n columns.

The formula left matrix multiplication corresponds to row operations explains the mathemagic behind Gaussian or Gauss-Jordan elimination. More precisely, performing row operations on a matrix A is the same as doing $L A$ for some other matrix L, which turns out to be a products of elimination, diagonal and permutation matrices.

1. Rules of matrix multiplication. (Section 2.4 of Strang.) Consider the following matrices:

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
3 & -1 & 2
\end{array}\right], \quad B=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
-1 & 3 & 2
\end{array}\right], \quad C=\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right], \quad D=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

Which of these matrix operations are allowed?
a) $A B$
b) $(A+B) C$
c) $C(A+B)$
d) $A D$
e) $D A$
f) $C A D$
2. Binomial formula for matrices. Show that $(A+B)^{2}$ is different from $A^{2}+2 A B+B^{2}$ when

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right]
$$

Write down the correct rule: $(A+B)^{2}=A^{2}+\cdots+B^{2}$.

Solution:

3. Consider the following matrices:

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad B=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right], \quad C=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad D=\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right]
$$

How is each row of $B A, C A, D A$ related to the rows of A ?

Solution:

4. Gaussian elimination (row echelon form). Solve the following system of linear equations by Gaussian elimination:

$$
\left\{\begin{array}{r}
x+2 y+3 z=1 \\
y+z=2 \\
3 x+y-z=3
\end{array}\right.
$$

Solution:

5. Gauss-Jordan elimination (reduced row echelon form). Same problem as above, but do Gauss-Jordan elimination.

Solution:

